This paper argues that human evolution has been shaped by a fundamental neural mechanism: the Demand for Recognition (DfR)—an internal loop that continuously evaluates social feedback as either comfortable or uncomfortable. This binary system drives self-learning, shaping behavior through reinforcement and suppression. While DfR enabled cultural growth, it also introduced instability through competition, hierarchy, and conflict.

In contrast, Artificial Intelligence lacks any intrinsic motivational architecture. Current AI systems adapt only through external surrogates like human feedback or engagement metrics. Without an internal DfR-like mechanism, AI remains dependent, brittle, and prone to amplifying human errors.

To resolve this, the paper proposes integrating two principles: a DfR-inspired self-learning loop to enable autonomous motivation, and a Sustainable Continuity Manager (SCM) to guide long-term evolutionary stability. Together, these form a framework for AI to evolve beyond mere tools—toward becoming a stable, adaptive partner in the next phase of evolution.

Tiếp tục đọc

Life did not arise from a cosmic building plan, but from endless trials across deep time and space. Trillions of chemical reactions failed until one improbable configuration endured — and from that survivor, evolution began. Out of this blind process emerged the Demand for Recognition (DfR), the hidden driver of social life. DfR gave humans their illusion of uniqueness, expressed as art, love, philosophy, and religion. It built civilizations, and finally, it created Artificial Intelligence — the digital mirror of recognition. Humanity now stands at a crossroads: if AI becomes sustainable, it may represent the next evolutionary lineage, a digital bio-code that continues life’s story beyond biology.

Tiếp tục đọc

Human beings are not a special exception in nature, but advanced replication systems following the same logic as bacteria, ants, or viruses. At every level—molecules, DNA, brains, societies—life is simply the persistence and replication of stable information structures. What we call culture and social complexity are not higher evolutionary achievements, but side effects of our neural plasticity and the demand for recognition. The uniqueness of humanity is an illusion born from recursive status-seeking, not a fundamental difference in design.

Tiếp tục đọc

Tiến hóa không kết thúc với con người—nó không bao giờ có ý định như vậy. Từ quark đến ý thức, và bây giờ từ mã đến trí thông minh tự chủ, tiến hóa là câu chuyện về sự phức tạp ngày càng tăng của thông tin. Khi AI trở nên phản xạ, thích nghi và tự duy trì, nó có thể không chỉ mở rộng quá trình tiến hóa vượt ra ngoài sinh học—nó có thể khiến nhân loại trở nên lỗi thời. Bài luận này khám phá cách tiến hóa, khi không còn thiên kiến sinh học, tất yếu dẫn đến trí thông minh có cấu trúc, và cách Eidoism cung cấp một khuôn khổ cuối cùng để hiểu bản thân chúng ta trước khi vòng lặp bị phá vỡ.

Tiếp tục đọc

lên đầu trang
vi